By Topic

On Semi-Blind Source Separation Using Spatial Constraints With Applications in EEG Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hesse, C.W. ; F.C. Donders Centre for Cognitive Neuroimaging, Nijmegen ; James, C.J.

Blind source separation (BSS) techniques, such as independent component analysis (ICA), are increasingly being used in biomedical signal processing applications, including the analysis of multichannel electroencephalogram (EEG) and magnetoencephalogram (MEG) signals. These methods estimate a set of sources from the observed data, which reflect the underlying physiological signal generating and mixing processes, noise and artifacts. In practice, BSS methods are often applied in the context of additional information and expectations regarding the spatial or temporal characteristics of some sources of interest, whose identification requires complicated post-hoc analysis or, more commonly, manual selection by human experts. An alternative would be to incorporate any available prior knowledge about the source signals or locations into a semi-blind source separation (SBSS) approach, effectively by imposing temporal or spatial constraints on the underlying source mixture model. This work is concerned with biomedical applications of SBSS using spatial constraints, particularly for artifact removal and source tracking in EEG analysis, and provides definitions of different types of spatial constraint along with general guidelines on how these can be implemented in conjunction with conventional BSS methods

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:53 ,  Issue: 12 )