By Topic

A Novel ECG Data Compression Method Based on Nonrecursive Discrete Periodized Wavelet Transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cheng-Tung Ku ; Inst. of Eng. Sci. & Technol., Nat. Kaohsiung First Univ. of Sci. & Technol. ; Huan-Sheng Wang ; King-Chu Hung ; Yao-Shan Hung

In this paper, a novel electrocardiogram (ECG) data compression method with full wavelet coefficients is proposed. Full wavelet coefficients involve a mean value in the termination level and the wavelet coefficients of all octaves. This new approach is based on the reversible round-off nonrecursive one-dimensional (1-D) discrete periodized wavelet transform (1-D NRDPWT), which performs overall stages decomposition with minimum register word length and resists truncation error propagation. A nonlinear word length reduction algorithm with high compression ratio (CR) is also developed. This algorithm supplies high and low octave coefficients with small and large decimal quantization scales, respectively. This quantization process can be performed without an extra divider. The two performance parameters, CR and percentage root mean square difference (PRD), are evaluated using the MIT-BIH arrhythmia database. Compared with the SPIHT scheme, the PRD is improved by 14.95% for 4lesCRles12 and 17.6% for 14lesCRles20

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:53 ,  Issue: 12 )