Cart (Loading....) | Create Account
Close category search window

Direct Modulation Characteristics of Composite Resonator Vertical-Cavity Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Grasso, D.M. ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL ; Serkland, Darwin K. ; Peake, Gregory M. ; Geib, K.M.
more authors

We report the small-signal modulation characteristics of a monolithic dual resonator vertical cavity surface emitting laser. The modulation response is described by a system of rate equations with two independent carrier populations and a single longitudinal optical mode. The independent optical overlaps and differential gains of the two active regions can each be adjusted to maximize the output response. We show that under certain conditions, the composite resonator may achieve a higher bandwidth than a single cavity laser with the same photon density. We find the relaxation oscillation frequency to depend mainly on the total photon density and not the individual currents in the two cavities. With appropriate current injection, the composite resonator laser achieves a maximum -3-dB bandwidth of 12.5 GHz and a maximum modulation current efficiency factor of approximately 5GHz/ma1/2

Published in:

Quantum Electronics, IEEE Journal of  (Volume:42 ,  Issue: 12 )

Date of Publication:

Dec. 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.