By Topic

Extensions of the Zwart-Powell Box Spline for Volumetric Data Reconstruction on the Cartesian Lattice

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Entezari, A. ; Sch. of Comput. Sci., Simon Fraser Univ., Burnaby, BC ; Möller, T.

In this article we propose a box spline and its variants for reconstructing volumetric data sampled on the Cartesian lattice. In particular we present a tri-variate box spline reconstruction kernel that is superior to tensor product reconstruction schemes in terms of recovering the proper Cartesian spectrum of the underlying function. This box spline produces a C2 reconstruction that can be considered as a three dimensional extension of the well known Zwart-Powell element in 2D. While its smoothness and approximation power are equivalent to those of the tri-cubic B-spline, we illustrate the superiority of this reconstruction on functions sampled on the Cartesian lattice and contrast it to tensor product B-splines. Our construction is validated through a Fourier domain analysis of the reconstruction behavior of this box spline. Moreover, we present a stable method for evaluation of this box spline by means of a decomposition. Through a convolution, this decomposition reduces the problem to evaluation of a four directional box spline that we previously published in its explicit closed form

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:12 ,  Issue: 5 )