By Topic

Concurrent Visualization in a Production Supercomputing Environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ellsworth, D. ; AMTl, NASA Ames Res. Center, Moffett Field, CA ; Green, B. ; Henze, C. ; Moran, P.
more authors

We describe a concurrent visualization pipeline designed for operation in a production supercomputing environment. The facility was initially developed on the NASA Ames "Columbia" supercomputer for a massively parallel forecast model (GEOS4). During the 2005 Atlantic hurricane season, GEOS4 was run 4 times a day under tight time constraints so that its output could be included in an ensemble prediction that was made available to forecasters at the National Hurricane Center. Given this time-critical context, we designed a configurable concurrent pipeline to visualize multiple global fields without significantly affecting the runtime model performance or reliability. We use MPEG compression of the accruing images to facilitate live low-bandwidth distribution of multiple visualization streams to remote sites. We also describe the use of our concurrent visualization framework with a global ocean circulation model, which provides a 864-fold increase in the temporal resolution of practically achievable animations. In both the atmospheric and oceanic circulation models, the application scientists gained new insights into their model dynamics, due to the high temporal resolution animations attainable

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:12 ,  Issue: 5 )