Cart (Loading....) | Create Account
Close category search window
 

User Interaction with Scatterplots on Small Screens - A Comparative Evaluation of Geometric-Semantic Zoom and Fisheye Distortion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yost, B. ; Virginia Tech., VA ; North, C.

Larger, higher resolution displays can be used to increase the scalability of information visualizations. But just how much can scalability increase using larger displays before hitting human perceptual or cognitive limits? Are the same visualization techniques that are good on a single monitor also the techniques that are best when they are scaled up using large, high-resolution displays? To answer these questions we performed a controlled experiment on user performance time, accuracy, and subjective workload when scaling up data quantity with different space-time-attribute visualizations using a large, tiled display. Twelve college students used small multiples, embedded bar matrices, and embedded time-series graphs either on a 2 megapixel (Mp) display or with data scaled up using a 32 Mp tiled display. Participants performed various overview and detail tasks on geospatially-referenced multidimensional time-series data. Results showed that current designs are perceptually scalable because they result in a decrease in task completion time when normalized per number of data attributes along with no decrease in accuracy. It appears that, for the visualizations selected for this study, the relative comparison between designs is generally consistent between display sizes. However, results also suggest that encoding is more important on a smaller display while spatial grouping is more important on a larger display. Some suggestions for designers are provided based on our experience designing visualizations for large displays

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:12 ,  Issue: 5 )

Date of Publication:

Sept.-Oct. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.