Cart (Loading....) | Create Account
Close category search window
 

Human Motion Capture Data Compression by Model-Based Indexing: A Power Aware Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Siddhartha Chattopadhyay ; Dept. of Comput. Sci., Georgia Univ., Athens, GA ; Bhandarkar, S.M. ; Kang Li

Human motion capture (MoCap) data can be used for animation of virtual human-like characters in distributed virtual reality applications and networked games. MoCap data compressed using the standard MPEG-4 encoding pipeline comprising of predictive encoding (and/or DCT decorrelation), quantization, and arithmetic/Huffman encoding, entails significant power consumption for the purpose of decompression. In this paper, we propose a novel algorithm for compression of MoCap data, which is based on smart indexing of the MoCap data by exploiting structural information derived from the skeletal virtual human model. The indexing algorithm can be fine-controlled using three predefined quality control parameters (QCPs). We demonstrate how an efficient combination of the three QCPs results in a lower network bandwidth requirement and reduced power consumption for data decompression at the client end when compared to standard MPEG-4 compression. Since the proposed algorithm exploits structural information derived from the skeletal virtual human model, it is observed to result in virtual human animation of visually acceptable quality upon decompression

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:13 ,  Issue: 1 )

Date of Publication:

Jan.-Feb. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.