Cart (Loading....) | Create Account
Close category search window
 

Efficient Parameterized Algorithms for Biopolymer Structure-Sequence Alignment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yinglei Song ; Dept. of Comput. Sci., Georgia Inst. of Technol., Athens, GA ; Chunmei Liu ; Xiuzhen Huang ; Malmberg, R.L.
more authors

Computational alignment of a biopolymer sequence (e.g., an RNA or a protein) to a structure is an effective approach to predict and search for the structure of new sequences. To identify the structure of remote homologs, the structure-sequence alignment has to consider not only sequence similarity, but also spatially conserved conformations caused by residue interactions and, consequently, is computationally intractable. It is difficult to cope with the inefficiency without compromising alignment accuracy, especially for structure search in genomes or large databases. This paper introduces a novel method and a parameterized algorithm for structure-sequence alignment. Both the structure and the sequence are represented as graphs, where, in general, the graph for a biopolymer structure has a naturally small tree width. The algorithm constructs an optimal alignment by finding in the sequence graph the maximum valued subgraph isomorphic to the structure graph. It has the computational time complexity O(k3N2) for the structure of N residues and its tree decomposition of width t. Parameter k, small in nature, is determined by a statistical cutoff for the correspondence between the structure and the sequence. This paper demonstrates a successful application of the algorithm to RNA structure search used for noncoding RNA identification. An application to protein threading is also discussed

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:3 ,  Issue: 4 )

Date of Publication:

Oct.-Dec. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.