Cart (Loading....) | Create Account
Close category search window
 

A Fast Procedure for Optimizing Dynamic Force Distribution in Multifingered Grasping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu Zheng ; Robotics Inst., Shanghai Jiao Tong Univ. ; Wen-Han Qian

This correspondence deals with the dynamic force distribution (DFD) problem, i.e., computing the contact forces to equilibrate a dynamic external wrench on the grasped object. The sum of the normal force components is minimized for enhancing safety and saving energy. By this optimality criterion, the DFD problem can be transformed into a linear programming (LP) problem. Its objective function is the inner product of the dynamic external wrench and a vector, and the constraints on the vector, given by a set of linear inequalities, define a polytope. The solution to the LP problem can always be attained at the vertex of the polytope called the solution vertex. We notice that the polytope is determined by the grasp configuration. Along with the direction change of the dynamic external wrench, only the solution vertex moves to an adjacent vertex sequentially, whereas the polytope with all its vertices remains unchanged. Therefore, the polytope and the adjacencies of each vertex can be computed in the offline phase. Then, in the online phase, simply search the adjacencies of the old solution vertex for the new one. Without lost of optimality, such a DFD algorithm runs a thousandfold faster than solving the LP problem by the simplex method in real time

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:36 ,  Issue: 6 )

Date of Publication:

Dec. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.