By Topic

Robust Stability of Switched Cohen–Grossberg Neural Networks With Mixed Time-Varying Delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kun Yuan ; Dept. of Math., Southeast Univ., Nanjing ; Jinde Cao ; Han-Xiong Li

By combining Cohen-Grossberg neural networks with an arbitrary switching rule, the mathematical model of a class of switched Cohen-Grossberg neural networks with mixed time-varying delays is established. Moreover, robust stability for such switched Cohen-Grossberg neural networks is analyzed based on a Lyapunov approach and linear matrix inequality (LMI) technique. Simple sufficient conditions are given to guarantee the switched Cohen-Grossberg neural networks to be globally asymptotically stable for all admissible parametric uncertainties. The proposed LMI-based results are computationally efficient as they can be solved numerically using standard commercial software. An example is given to illustrate the usefulness of the results

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:36 ,  Issue: 6 )