By Topic

Rotation-Invariant Texture Image Retrieval Using Rotated Complex Wavelet Filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kokare, M. ; Dept. of Electron. & Telecommun. Eng., Gobind Singhji Inst. of Eng. & Technol., Maharashtra ; Biswas, P.K. ; Chatterji, B.N.

This paper proposes a novel approach for rotation-invariant texture image retrieval by using set of dual-tree rotated complex wavelet filter (DT-RCWF) and DT complex wavelet transform (DT-CWT) jointly, which obtains texture features in 12 different directions. Two-dimensional RCWFs are nonseparable and oriented, which improves characterization of oriented textures. Robust and efficient isotropic rotationally invariant features are extracted from DT-RCWF and DT-CWT decomposed subbands. This paper demonstrates the effectiveness of this new set of features on four different sets of rotated and nonrotated databases. Experimental results indicate that the proposed method improves retrieval accuracy from 83.17% to 93.71% on a small size (208 images) nonrotated database D1, from 82.71% to 90.86% on a small size (208 images) rotated database D2, from 72.18% to 76.09% on a medium-size (640 images) rotated database D3, and from 64.17% to 78.93% on a large size (1856 images) rotated database D4, compared with the discrete wavelet transform-based approach. New method also retains complexity

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:36 ,  Issue: 6 )