By Topic

Customized Generalization of Support Patterns for Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yiqiu Han ; Dept. of Syst. Eng. & Eng. Manage., Chinese Univ. of Hong Kong, Shatin ; Wai Lam ; Ling, C.X.

We propose a novel classification learning method called customized support pattern learner (CSPL). Given an instance to be classified, CSPL explores and discovers support patterns (SPs), which are essentially attribute value subsets of the instance to be classified. The final prediction of the class label is performed by combining some statistics of the discovered useful SPs. One advantage of the CSPL method is that it can explore a richer hypothesis space and discover useful classification patterns involving attribute values with almost indistinguishable information gain. The customized learning characteristic also allows that the target class can vary for different instances to be classified. It facilitates extremely easy training instance maintenance and updates. We have evaluated our method with real-world problems and benchmark data sets. The results demonstrate that CSPL can achieve good performance and high reliability

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:36 ,  Issue: 6 )