By Topic

CATSMLP: Toward a Robust and Interpretable Multilayer Perceptron With Sigmoid Activation Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fu-lai Chung ; Dept. of Comput., Hong Kong Polytech. Univ., Kowloon ; Shitong Wang ; Zhaohong Deng ; Dewen Hu

Enhancing the robustness and interpretability of a multilayer perceptron (MLP) with a sigmoid activation function is a challenging topic. As a particular MLP, additive TS-type MLP (ATSMLP) can be interpreted based on single-stage fuzzy IF-THEN rules, but its robustness is degraded with the increase in the number of intermediate layers. This paper presents a new MLP model called cascaded ATSMLP (CATSMLP), where the ATSMLPs are organized in a cascaded way. The proposed CATSMLP is a universal approximator and is also proven to be functionally equivalent to a fuzzy inference system based on syllogistic fuzzy reasoning. Therefore, the CATSMLP may be interpreted based on syllogistic fuzzy reasoning in a theoretical sense. Meanwhile, due to the fact that syllogistic fuzzy reasoning has distinctive advantage over single-stage IF-THEN fuzzy reasoning in robustness, this paper proves in an indirect way that the CATSMLP is more robust than the ATSMLP in an upper-bound sense. Several experiments were conducted to confirm such a claim

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:36 ,  Issue: 6 )