By Topic

Timeless Discretization of Magnetization Slope in the Modeling of Ferromagnetic Hysteresis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Al-Junaid, H. ; Sch. of Electron. & Comput. Sci., Southampton Univ. ; Kazmierski, T. ; Wilson, P.R. ; Baranowski, J.

A new methodology is presented to assure numerically reliable integration of the magnetization slope in the Jiles-Atherton model of ferromagnetic core hysteresis. Two hardware description language (HDL) implementations of the technique are presented: one in SystemC and the other in very-high-speed integrated circuit (VHSIC) HDL (VHDL) analog and mixed signal (AMS). The new model uses timeless discretization of the magnetization slope equation and provides superior accuracy and numerical stability especially at the discontinuity points that occur in hysteresis. Numerical integration of the magnetization slope is carried out by the model itself rather than by the underlying analog solver. The robustness of the model is demonstrated by practical simulations of examples involving both major and minor hysteresis loops

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:25 ,  Issue: 12 )