By Topic

Resolution of signal sources via spectral moment estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Monakov, A.A. ; St. Petersburg State Univ. of Aerosp. Instrum. ; Varfolomeev, G.A.

In different practical situations it is desired to estimate the number of signal sources and their positions in space or in frequency domain. The first problem is known as the detection or the order estimation and the second one as the resolution. For the resolution problem techniques such as nonlinear least squares (NLSM), high-order Yule-Walker method (HOYW), multiple signal classification (MUSIC), Pisarenko harmonic retrieval method, min-norm method, estimation of signal parameters by rotational invariance technique (ESPRIT), were proposed (Marple, 1987 and Stoica and Moses, 1997). All these high-resolution methods are based on the analysis of the signal covariance matrix. But the covariance matrix is not the only choice to represent the signal spectrum. In different applications (weather radars, synthetic aperture radar (SAR) signal processing, ultrasound imaging in medicine, atmospheric turbulence measurements) the signal spectrum can be modeled through its algebraic moments. Recently a number of efficient nonparametric methods have been proposed to estimate the algebraic spectral moments (Monakov, 1999). The presented paper is an attempt to solve the direction of arrival (DOA) problem via estimation of the algebraic spectral moments. A method proposed in the article is comparable in its accuracy with the MUSIC method. At the same time its computational burden is much lower. The method permits to estimate the signal power of sources easily to complete the full spectral line analysis. Additionally the method shows good robustness in situations when signal sources have noticeable spatial extend

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:42 ,  Issue: 3 )