By Topic

Novel Transmit Beamforming Schemes for Time-Selective Fading Multiantenna Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Li Liu ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Irvine, CA ; Jafarkhani, Hamid

Transmit beamforming has been widely adopted for wireless systems with multiple transmit antennas. For a block fading channel, the Grassmannian beamformer has been shown to provide very good performance for finite rate feedback. However, the original Grassmannian beamformer does not take the time domain correlation of the channel fading into consideration. In this paper, based on a first-order autoregressive (AR1) dynamic fading model, we develop two new classes of beamforming algorithms that exploit the interframe correlations in the channel fading. We first introduce an algorithm based on a standard predictive vector quantization (PVQ) approach, and the resulting PVQ beamformer accomplishes superior power delivery at the receiver. However, the error performance of the PVQ beamformer is not satisfactory at high signal-to-noise ratios, and it also has a high implementation complexity. To resolve these issues, we then develop a novel successive beamforming (SBF) algorithm. The new SBF scheme uses the knowledge of the previous fading blocks to aid the beamforming codebook design of the current fading block. The beamforming codebook is constructed based on the successive partition of the surface of a spherical cap. The new SBF scheme accomplishes nearly the same performance as that of the PVQ beamformer, and it has a much simpler implementation. Through numerical simulations, we demonstrate that the proposed beamformers outperform the other previously proposed beamformers at various fading scenarios

Published in:

Signal Processing, IEEE Transactions on  (Volume:54 ,  Issue: 12 )