By Topic

Radar Polarimetry Analysis Applied to Single-Hole Fully Polarimetric Borehole Radar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jian-Guo Zhao ; Graduate Sch. of Environ. Studies, Tohoku Univ., Sendai ; Motoyuki Sato

A fully polarimetric borehole radar system using four combinations of dipole and slot antennas was developed to acquire fully polarimetric data sets in drilled boreholes. First, to implement radar polarimetry analysis, a processing scheme suitable for analyzing a single-hole reflection data set acquired by the system is presented. This processing consists of antenna-characteristic compensation, migration for image reconstruction, and time-frequency analysis for single-frequency data set construction. Two polarimetric target decomposition methods, namely: 1) Pauli decomposition and 2) eigenvector-based decomposition, are applied to characterize the scattering problem of the subsurface fractures. The Pauli decomposition method provided important radar polarimetry information of fractures, and the eigenvector-based decomposition method made a significant contribution to understanding the scattering mechanisms from different fractures with different properties. Furthermore, information about fracture classification can be obtained by analysis of the H-alpha distribution provided by eigenvector-based decomposition of local radar image regions. The potential of polarimetric target decomposition techniques to fracture characterization is shown, which, in turn, provides valuable information about water permeabilities of fractures in hydrogeological studies

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:44 ,  Issue: 12 )