By Topic

Optical Mode Control of Surface-Plasmon Quantum Cascade Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Moreau, V. ; Inst. d''Electronique Fondamentale, Univ. de Paris-Sud, Orsay ; Bahriz, M. ; Palomo, J. ; Wilson, L.R.
more authors

Surface-plasmon waveguides based on metallic strips can provide a two-dimensional optical confinement. This concept has been successfully applied to midinfrared quantum cascade lasers, processed as ridge waveguides, to demonstrate that the lateral extension of the optical mode can be influenced solely by the width of the device top contact. In this configuration, the waveguide mode has a reduced interaction with the top metal and the ridge sidewalls. This results in lower propagation losses and higher performances. For devices operating at a wavelength of lambdaap7.5 mum, the room-temperature threshold current density was reduced from 6.3 to 4.4 kA/cm2 with respect to larger devices with full top metallization

Published in:

Photonics Technology Letters, IEEE  (Volume:18 ,  Issue: 23 )