By Topic

Failure-Aware, Open-Loop, Adaptive Video Streaming With Packet-Level Optimized Redundancy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Andreopoulos, Y. ; Dept. of Electr. Eng., California Univ., Los Angeles, CA ; Keralapura, R. ; van der Schaar, M. ; Chuah, Chen-Nee

A plethora of coding and streaming mechanisms have been proposed for real-time multimedia transmission over the Internet. However, most proposed mechanisms rely only on global (e.g. based on end-to-end measurements), delayed (at least by the round-trip-time), or statistical (often based on simplistic network models) information available about the network state. Based on recently-proposed state-of-the-art open-loop video coding schemes, we propose a new integrated streaming and routing framework for robust and efficient video transmission over networks exhibiting path failures. Our approach explicitly takes into account the network dynamics, path diversity, and the modeled video distortion at the receiver side to optimize the packet redundancy and scheduling. In the derived framework, multimedia streams can be adapted dynamically at the video server based on instantaneous routing-layer information or failure-modeling statistics. The performance of our integrated application and network-layer method is simulated against equivalent approaches that are not optimized based on routing-layer feedback and distortion modeling, and the obtained gains in video quality are quantified

Published in:

Multimedia, IEEE Transactions on  (Volume:8 ,  Issue: 6 )