By Topic

Microfluidic Three-Electrode Cell Array for Low-Current Electrochemical Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Triroj, N. ; Eng. Div., Brown Univ., Providence, RI ; Lapierre-Devlin, M.A. ; Kelley, S.O. ; Beresford, R.

This paper reports the implementation and calibration of a microscopic three-electrode electrochemical sensor integrated with a polydimethylsiloxane (PDMS) microchannel to form a rapid prototype chip technology that is used to develop sensing modules for biomolecular signals. The microfluidic/microelectronic fabrication process yields identical, highly uniform, and geometrically well-defined microelectrodes embedded in a microchannel network. Each three-microelectrode system consists of a Au working electrode with a nominal surface area of 9 mum2, a Cl2 plasma-treated Ag/AgCl reference electrode, and a Au counter electrode. The patterned electrodes on the glass substrate are aligned and irreversibly bonded with a PDMS microchannel network giving a channel volume of 72 nL. The electrokinetic properties and the diffusion profile of the microchannels are investigated under electrokinetic flow and pressure-driven flow conditions. Cyclic voltammetry of 10 mM K3 Fe(CN)6 in 1 M KNO3 demonstrates that the electrode responses in the cell are characterized by linear diffusion. The voltammograms show that the system is a quasi-reversible redox process, with heterogeneous rate constants ranging from 3.11 to 4.94times10-3 cm/s for scan rates of 0.1-1 V/s. The current response in the cell is affected by the adsorption of the electroactive species on the electrode surface. In a low-current DNA hybridization detection experiment, the electrode cell is modified with single-stranded thiolated DNA. The electrocatalytic reduction of 27 muM Ru(NH3)6 3+ in a solution containing 2 mM Fe(CN)6 3- is measured before and after the exposure of the electrode cell to a 500-nM target DNA sample. The preliminary result showing an increase in the peak current response demonstrates the hybridization-based detection of a complementary target DNA sequence

Published in:

Sensors Journal, IEEE  (Volume:6 ,  Issue: 6 )