By Topic

`Print and Scan' Resilient Data Hiding in Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kaushal Solanki ; Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA ; Upamanyu Madhow ; B. S. Manjunath ; Shiv Chandrasekaran
more authors

Print-scan resilient data hiding finds important applications in document security and image copyright protection. This paper proposes methods to hide information into images that achieve robustness against printing and scanning with blind decoding. The selective embedding in low frequencies scheme hides information in the magnitude of selected low-frequency discrete Fourier transform coefficients. The differential quantization index modulation scheme embeds information in the phase spectrum of images by quantizing the difference in phase of adjacent frequency locations. A significant contribution of this paper is analytical and experimental modeling of the print-scan process, which forms the basis of the proposed embedding schemes. A novel approach for estimating the rotation undergone by the image during the scanning process is also proposed, which specifically exploits the knowledge of the digital halftoning scheme employed by the printer. Using the proposed methods, several hundred information bits can be embedded into images with perfect recovery against the print-scan operation. Moreover, the hidden images also survive several other attacks, such as Gaussian or median filtering, scaling or aspect ratio change, heavy JPEG compression, and rows and/or columns removal

Published in:

IEEE Transactions on Information Forensics and Security  (Volume:1 ,  Issue: 4 )