By Topic

Sparse Kernel Logistic Regression using Incremental Feature Selection for Text-Independent Speaker Identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Logistic regression is a well known classification method in the field of statistical learning. Recently, a kernelized version of logistic regression has become very popular, because it allows non-linear probabilistic classification and shows promising results on several benchmark problems. In this paper we show that kernel logistic regression (KLR) and especially its sparse extensions (SKLR) are useful alternatives to standard Gaussian mixture models (GMMs) and support vector machines (SVMs) in Speaker recognition. While the classification results of KLR and SKLR are similar to the results of SVMs, we show that SKLR produces highly sparse models. Unlike SVMs the kernel logistic regression also provides an estimate of the conditional probability of class membership. In speaker identification experiments the SKLR methods outperform the SVM and the GMM baseline system on the POLY-COST database

Published in:

Speaker and Language Recognition Workshop, 2006. IEEE Odyssey 2006: The

Date of Conference:

28-30 June 2006