By Topic

Securing Mobile Ad Hoc Networks with Certificateless Public Keys

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yanchao Zhang ; Dept. of Electr. & Comput. Eng., New Jersey Inst. of Technol., Newark, NJ ; Wei Liu ; Wenjing Lou ; Yuguang Fang

This paper studies key management, a fundamental problem in securing mobile ad hoc networks (MANETs). We present IKM, an ID-based key management scheme as a novel combination of ID-based and threshold cryptography. IKM is a certificateless solution in that public keys of mobile nodes are directly derivable from their known IDs plus some common information. It thus eliminates the need for certificate-based authenticated public-key distribution indispensable in conventional public-key management schemes. IKM features a novel construction method of ID-based public/private keys, which not only ensures high-level tolerance to node compromise, but also enables efficient network-wide key update via a single broadcast message. We also provide general guidelines about how to choose the secret-sharing parameters used with threshold cryptography to meet desirable levels of security and robustness. The advantages of IKM over conventional certificate-based solutions are justified through extensive simulations. Since most MANET security mechanisms thus far involve the heavy use of certificates, we believe that our findings open a new avenue towards more effective and efficient security design for MANETs

Published in:

Dependable and Secure Computing, IEEE Transactions on  (Volume:3 ,  Issue: 4 )