By Topic

Real-Time Finite-Element Simulation of Linear Viscoelastic Tissue Behavior Based on Experimental Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sedef, Mert ; Dept. of Computational Sci. & Eng., Koc Univ. ; Samur, Evren ; Basdogan, C.

We propose an end-to-end solution to real-time and realistic finite-element modeling and simulation of viscoelastic soft tissue behavior. We provide an efficient numerical scheme for solving a linear viscoelastic FEM model derived from the generalized Maxwell solid, and present methods for measuring and integrating experimental data on the viscoelastic material properties of soft tissues into the model for realistic display of visual deformations and interaction forces. Our precomputation scheme and multilayer computational architecture enable the model's real-time execution with visual and haptic feedback to the user. Our approach includes time- and rate-dependent effects, which requires considering a node's loading history in our displacement computations at each cycle of the simulation

Published in:

Computer Graphics and Applications, IEEE  (Volume:26 ,  Issue: 6 )