By Topic

Estimation of the Frequency-Dependent Average Dielectric Properties of Breast Tissue Using a Time-Domain Inverse Scattering Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Winters, D.W. ; Dept. of Electr. & Comput. Eng., Wisconsin Univ., Madison, WI ; Bond, Essex J. ; Van Veen, B.D. ; Hagness, S.C.

Ultrawideband (UWB) microwave radar imaging techniques for breast cancer detection typically require estimates of the spatially averaged dielectric properties of breast tissue. We propose an algorithm for estimating patient-specific, frequency-dependent average dielectric properties from scattered UWB microwave signals. The algorithm is a variation of an iterative finite-difference time-domain (FDTD) technique for solving the time-domain inverse scattering problem. The assumption is made that the breast consists of two homogeneous regions: skin and underlying tissue. This two-medium geometry results in an inverse scattering problem that is not as ill-posed as those typically encountered in microwave tomography because the number of unknowns being sought is very small. We test the performance of the algorithm on data simulated using anatomically realistic 2-D numerical breast phantoms

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:54 ,  Issue: 11 )