Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Naval Structural Antenna Systems for Broadband HF Communications—Part II: Design Methodology for Real Naval Platforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Marrocco, G. ; Dipt. di Informatica, Sistemi e Produzione, Univ. of Roma "Tor Vergata" ; Mattioni, L. ; Martorelli, V.

Recently, it was shown how to make a multipurpose broadband HF antenna system out of existing naval super-structures such as the funnel or a big mast. The idea was discussed by means of canonical structures, e.g., a cylindrical body of circular or square cross-section, placed onto an infinite ground plane. This paper investigates the critical aspects concerning the extension of naval structural antenna concept to real ship platforms with the aim to define a general design methodology for impedance matching and radiation pattern control. The method is described with reference to a realistic frigate model, whose big mast is transformed into a broadband HF antenna system able to perform communications by both sea-wave and sky-wave links. It is demonstrated that, even in a real environment, the multiport strategy permits to increase the system efficiency and to moderately shape the radiation pattern in order to overcome the shadowing effect due to other large objects

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:54 ,  Issue: 11 )