By Topic

Coherence and noise properties of gain-switched Fabry-Perot semiconductor lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. A. Griffin ; Phys. Lab., Kent Univ., Canterbury, UK ; D. A. Jackson ; D. D. Sampson

We present a detailed study of the optical power spectrum and coherence properties of Fabry-Perot semiconductor lasers under gain-switched operation. We demonstrate that the distribution of longitudinal modes under gain-switched operation is described to high accuracy by a Gaussian envelope, in contrast to continuous wave (CW) lasers where the distribution is Lorentzian. We show that the minimum values of coherence under gain-switched operation are two orders of magnitude lower than under CW operation. We also demonstrate that intensity noise generated through interferometric conversion of mode partition noise is markedly different for gain-switched and CW lasers. The results are important for a host of potential applications that use low-coherence interferometry

Published in:

IEEE Journal of Selected Topics in Quantum Electronics  (Volume:1 ,  Issue: 2 )