Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A VLIW Processor With Hardware Functions: Increasing Performance While Reducing Power

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jones, A.K. ; Dept. of Electr. & Comput. Eng., Univ. of Pittsburgh, PA ; Hoare, R. ; Kusic, D. ; Stander, J.
more authors

This brief presents a heterogeneous multicore embedded processor architecture designed to exceed performance of traditional embedded processors while reducing the power consumed compared to low-power embedded processors. At the heart of this architecture is a multicore very large instruction word (VLIW) containing homogeneous execution cores/functional units. Additionally, heterogeneous combinational hardware function cores are tightly integrated to the VLIW core providing an opportunity for improved performance and reduced energy consumption. Our processor has been synthesized for both a 90-nm Stratix II field-programmable gate array and a 160-nm cell-based application-specific integrated circuit from Oki each operating at a core frequency of 167 MHz. For selected multimedia and signal processing benchmarks, we show how this processor provides kernel performance improvements averaging 179X over an Intel StrongARM and 36X over an Intel XScale leading to application speedups averaging 30X over StrongARM and 10X over XScale

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:53 ,  Issue: 11 )