By Topic

Mechanical Load Fault Detection in Induction Motors by Stator Current Time-Frequency Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Blodt, M. ; Lab. d''Electrotech. et d''Electron. Ind., CNRS, Toulouse ; Chabert, M. ; Regnier, J. ; Faucher, J.

This paper examines the detection of mechanical faults in induction motors by an original use of stator current time-frequency analysis. Mechanical faults lead generally to periodic load torque oscillations. The influence of the torque oscillations on the induction motor stator current is studied using an analytical approach. The mechanical fault results in a sinusoidal phase modulation of the stator current, which is equivalent to a time-varying frequency. Based on these assumptions, several signal processing methods suitable for stator current signature analysis are discussed: classical spectral analysis, instantaneous frequency estimation, and the Wigner distribution. Experimental and simulation results validate the theoretical approach in steady-state operating conditions

Published in:

Industry Applications, IEEE Transactions on  (Volume:42 ,  Issue: 6 )