By Topic

Anisotropic Conductive Film Bonding by Making Use of a High-Power Diode Laser

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kwang Hyun Ryu ; Dept. of Phys., Hankuk Univ. of Foreign Studies, Gyeonggi-Do ; Namic Kwon ; Myung Hee Seo ; Myung Hoon Lee
more authors

Anisotropic conductive film (ACF) bonding between liquid crystal displays (LCDs) and driver integrated circuits (ICs) is one of the key technologies for developing high-resolution LCDs. The bonding pitch between LCD and tape carrier package (TCP), which influences the total reliability of LCD modules, depends on the characteristics and bonding conditions of ACF used. So, the bonding process between TCP and a glass panel with ACF using a high-power diode laser as a heat source for curing is preliminarily tested in this experiment. Also, laser transient thermal simulation was performed to analyze the thermal response of the assembly process for a package using ACF. The temperature on the ACF layer goes up to 180 degC (ACF curing temperature) within 1 s after exposure to laser light. This paper reports an effective bonding method using a diode laser, which accomplishes a fine-pitch ACF bonding and determines the optimum ACF bonding condition effectively

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:29 ,  Issue: 4 )