By Topic

Optical Equalization: System Modeling and Performance Evaluation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Secondini, M. ; Scuola Superiore Sant''Anna di Studi Univ. e Perfezionamento, Pisa

Optical equalization in fiber-optic systems is theoretically investigated. First, a wide variety of optical equalizers is presented by giving their equivalent models, by describing the basic principles of operation, and by showing analogies and differences among different structures and configurations. Then, evaluation of the bit error rate and outage probability, in the presence of optical noise, chromatic dispersion (CD), and polarization mode dispersion (PMD), is discussed by comparing different methods based either on the PMD vector and its related statistics or on Markov chain Monte Carlo (MCMC) simulations applied to a random waveplate model. As the first relevant result, the accuracy and complexity of different PMD models in compensated systems are tested and compared, and a novel reduced Bruyegravere-Kogelnik (BK) model, which is more accurate and simple than the complete BK model or other second-order models, is proposed. As an additional result, the ultimate theoretical performance for different configurations and numbers of stages of the equalizers is given, and it is shown that when a single equalizer is used for a pair of polarization-multiplexed channels, the system tolerance to PMD is highly increased

Published in:

Lightwave Technology, Journal of  (Volume:24 ,  Issue: 11 )