By Topic

Tailored DFB laser properties by individually chirped gratings using bent waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
H. Hillmer ; Forschungszentrum, Deutsche Bundespost Telekom, Darmstadt, Germany ; A. Grabmaier ; S. Hansmann ; H. -L. Zhu
more authors

DFB lasers with continuously and arbitrarily chirped gratings of ultrahigh spatial precision are implemented by a method we proposed recently, using bent waveguides on homogeneous grating fields. Choosing individual bending functions we generate special chirping functions and obtain additional degrees of freedom to tailor and improve specific device performances. We present two applications for lasers showing several improved device properties and the effectiveness of our method. First, we implement continuously distributed phase-shifted lasers, revealing a considerably reduced photon pile-up, higher single-longitudinal mode stability, higher output power, lower linewidth, and higher yield than conventional abruptly phase-shifted lasers. Second, a novel tuning principle is applied in chirped multiple-section DFB lasers, showing 5.5-nm wavelength tuning, without any gaps, maintaining high side-mode suppression

Published in:

IEEE Journal of Selected Topics in Quantum Electronics  (Volume:1 ,  Issue: 2 )