By Topic

Model-Based Design Analysis and Yield Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pfingsten, T. ; Max Planck Inst., Tubingen ; Herrmann, D.J.L. ; Rasmussen, C.E.

Fluctuations are inherent to any fabrication process. Integrated circuits and microelectromechanical systems are particularly affected by these variations, and due to high-quality requirements the effect on the devices' performance has to be understood quantitatively. In recent years, it has become possible to model the performance of such complex systems on the basis of design specifications, and model-based sensitivity analysis has made its way into industrial engineering. We show how an efficient Bayesian approach, using a Gaussian process prior, can replace the commonly used brute-force Monte Carlo scheme, making it possible to apply the analysis to computationally costly models. We introduce a number of global, statistically justified sensitivity measures for design analysis and optimization. Two models of integrated systems serve us as case studies to introduce the analysis and to assess its convergence properties. We show that the Bayesian Monte Carlo scheme can save costly simulation runs and can ensure a reliable accuracy of the analysis

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:19 ,  Issue: 4 )