By Topic

Estimating the Number of Hidden Neurons in a Feedforward Network Using the Singular Value Decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Teoh, E.J. ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore ; Tan, K.C. ; Xiang, C.

In this letter, we attempt to quantify the significance of increasing the number of neurons in the hidden layer of a feedforward neural network architecture using the singular value decomposition (SVD). Through this, we extend some well-known properties of the SVD in evaluating the generalizability of single hidden layer feedforward networks (SLFNs) with respect to the number of hidden layer neurons. The generalization capability of the SLFN is measured by the degree of linear independency of the patterns in hidden layer space, which can be indirectly quantified from the singular values obtained from the SVD, in a postlearning step. A pruning/growing technique based on these singular values is then used to estimate the necessary number of neurons in the hidden layer. More importantly, we describe in detail properties of the SVD in determining the structure of a neural network particularly with respect to the robustness of the selected model

Published in:

Neural Networks, IEEE Transactions on  (Volume:17 ,  Issue: 6 )