By Topic

Evaluation of Neural Network Robust Reliability Using Information-Gap Theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pierce, S.G. ; Dept. of Electron. & Electr. Eng., Univ. of Strathclyde, Glasgow ; Ben-Haim, Y. ; Worden, K. ; Manson, G.

A novel technique for the evaluation of neural network robustness against uncertainty using a nonprobabilistic approach is presented. Conventional optimization techniques were employed to train multilayer perceptron (MLP) networks, which were then probed with an uncertainty analysis using an information-gap model to quantify the network response to uncertainty in the input data. It is demonstrated that the best performing network on data with low uncertainty is not in general the optimal network on data with a higher degree of input uncertainty. Using the concepts of information-gap theory, this paper develops a theoretical framework for information-gap uncertainty applied to neural networks, and explores the practical application of the procedure to three sample cases. The first consists of a simple two-dimensional (2-D) classification network operating on a known Gaussian distribution, the second a nine-lass vibration classification problem from an aircraft wing, and the third a two-class example from a database of breast cancer incidence

Published in:

Neural Networks, IEEE Transactions on  (Volume:17 ,  Issue: 6 )