By Topic

Locally Weighted Interpolating Growing Neural Gas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Flentge, F. ; Fraunhofer Inst. for Intelligent Anal. & Information Syst. (IAIS), Sankt Augustin

In this paper, we propose a new approach to function approximation based on a growing neural gas (GNG), a self-organizing map (SOM) which is able to adapt to the local dimension of a possible high-dimensional input distribution. Local models are built interpolating between values associated with the map's neurons. These models are combined using a weighted sum to yield the final approximation value. The values, the positions, and the "local ranges" of the neurons are adapted to improve the approximation quality. The method is able to adapt to changing target functions and to follow nonstationary input distributions. The new approach is compared to the radial basis function (RBF) extension of the growing neural gas and to locally weighted projection regression (LWPR), a state-of-the-art algorithm for incremental nonlinear function approximation

Published in:

Neural Networks, IEEE Transactions on  (Volume:17 ,  Issue: 6 )