By Topic

A Reversible Data Hiding Scheme Based on Side Match Vector Quantization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chin-chen Chang ; Dept. of Inf. Eng. & Comput. Sci., Feng Chia Univ., Taichung ; Wei-liang Tai ; Chia-chen Lin

Many researchers have studied reversible data hiding techniques in recent years and most have proposed reversible data hiding schemes that guarantee only that the original cover image can be reconstructed completely. Once the secret data are embedded in the compression domain and the receiver wants to store the cover image in a compression mode to save storage space, the receiver must extract the secret data, reconstruct the cover image, and compress the cover image again to generate compression codes. In this paper, we present a reversible data hiding scheme based on side match vector quantization (SMVQ) for digitally compressed images. With this scheme, the receiver only performs two steps to achieve the same goal: extract the secret data and reconstruct the original SMVQ compression codes. In terms of the size of the secret data, the visual quality, and the compression rate, experimental results show that the performance of our proposed scheme is better than those of other information hiding schemes for VQ-based and SMVQ-based compressed images. The experimental results further confirm the effectiveness and reversibility of the proposed scheme

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:16 ,  Issue: 10 )