By Topic

Efficient Huber-Markov Edge-Preserving Image Restoration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ruimin Pan ; Dept. of Electr. & Comput. Eng., Auburn Univ., AL ; Stanley J. Reeves

The regularization of the least-squares criterion is an effective approach in image restoration to reduce noise amplification. To avoid the smoothing of edges, edge-preserving regularization using a Gaussian Markov random field (GMRF) model is often used to allow realistic edge modeling and provide stable maximum a posteriori (MAP) solutions. However, this approach is computationally demanding because the introduction of a non-Gaussian image prior makes the restoration problem shift-variant. In this case, a direct solution using fast Fourier transforms (FFTs) is not possible, even when the blurring is shift-invariant. We consider a class of edge-preserving GMRF functions that are convex and have nonquadratic regions that impose less smoothing on edges. We propose a decomposition-enabled edge-preserving image restoration algorithm for maximizing the likelihood function. By decomposing the problem into two subproblems, with one shift-invariant and the other shift-variant, our algorithm exploits the sparsity of edges to define an FFT-based iteration that requires few iterations and is guaranteed to converge to the MAP estimate

Published in:

IEEE Transactions on Image Processing  (Volume:15 ,  Issue: 12 )