By Topic

Generating Stochastic Dispersed and Periodic Clustered Textures Using a Composite Hybrid Screen

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guo-Yau Lin ; Xerox Corp., Webster, NY ; Allebach, J.P.

In electrophotographic printing, a periodic clustered-dot halftone pattern is preferred for a smooth and stable result. In addition, the screen frequency should be high enough to minimize the visibility of the halftone textures and to ensure good detail rendition. However, at these frequencies, the halftone cell may contain too few pixels to provide a sufficient number of distinct gray levels. This will result in contouring and posterization. The traditional solution is to grow the clusters asynchronously within a repeating block of clusters known as a supercell. The growth of each individual cluster is governed by a microscreen. The order in which the clusters grow within the supercell is determined by a macroscreen. Typically, the macroscreen is a recursive pattern due to Bayer. In highlights and shadows, this ordering results in visible artifacts. Replacing the Bayer screen by a stochastic macroscreen eliminates these artifacts, but results in new artifacts. In this paper, we propose a new composite screen architecture that employs multiple microscreens and multiple macroscreens in the highlights and shadows. These screens are jointly designed by using the direct binary search (DBS) algorithm

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 12 )