By Topic

Analysis of Superimposed Oriented Patterns

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Til Aach ; Inst. of Imaging & Comput. Vision, RWTH Aachen Univ. ; Cicero Mota ; Ingo Stuke ; Matthias Muhlich
more authors

Estimation of local orientation in images may be posed as the problem of finding the minimum gray-level variance axis in a local neighborhood. In bivariate images, the solution is given by the eigenvector corresponding to the smaller eigenvalue of a 2times2 tensor. For an ideal single orientation, the tensor is rank-deficient, i.e., the smaller eigenvalue vanishes. A large minimal eigenvalue signals the presence of more than one local orientation, what may be caused by non-opaque additive or opaque occluding objects, crossings, bifurcations, or corners. We describe a framework for estimating such superimposed orientations. Our analysis is based on the eigensystem analysis of suitably extended tensors for both additive and occluding superpositions. Unlike in the single-orientation case, the eigensystem analysis does not directly yield the orientations, rather, it provides so-called mixed-orientation parameters (MOPs). We, therefore, show how to decompose the MOPs into the individual orientations. We also show how to use tensor invariants to increase efficiency, and derive a new feature for describing local neighborhoods which is invariant to rigid transformations. Applications are, e.g., in texture analysis, directional filtering and interpolation, feature extraction for corners and crossings, tracking, and signal separation

Published in:

IEEE Transactions on Image Processing  (Volume:15 ,  Issue: 12 )