By Topic

Understanding the Impact of Inductance in Carbon Nanotube Bundles for VLSI Interconnect Using Scalable Modeling Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Arthur Nieuwoudt ; Rice Univ., Houston, TX ; Yehia Massoud

In this paper, we develop accurate and scalable models for the magnetic inductance in bundles of single-walled carbon nanotubes, which have been proposed as a means to alleviate the increasingly critical resistance problems associated with traditional copper interconnect in very large scale integration (VLSI) applications. The models consider the density and statistical distribution of both metallic and semiconducting nanotubes within the bundle. We evaluate the speed, accuracy, and scalability of our magnetic inductance modeling techniques and previously proposed inductance models. The inductance model with the best performance evaluates the magnetic inductance of nanotube bundles with excellent accuracy when compared to modeling each nanotube individually and provides orders of magnitude improvement in CPU time as the bundle size increases. Leveraging the magnetic inductance modeling techniques, we determine the relative impact of magnetic and kinetic inductance. Based on our results, the relative value of magnetic and kinetic inductance on single-walled carbon nanotube (SWCNT) bundles is highly dependent on the bundle geometry and the per unit length kinetic inductance

Published in:

IEEE Transactions on Nanotechnology  (Volume:5 ,  Issue: 6 )