By Topic

Transient analysis of distribution class adaptive VAr compensators: simulation and field test results

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Kagalwala, R.A. ; Electr. Energy Group, Washington Univ., Seattle, WA, USA ; Venkata, S.S. ; El-Sharkawi, M.A. ; Butler, N.G.
more authors

Simulation studies are performed to analyze the transient behavior of the adaptive VAr compensator (AVC), a power electronic device installed at the distribution level, during its design, installation and field testing stages. The simulation model includes detailed models for power apparatus, power semiconductor devices and low signal level electronics. Hence, by using this model, a wide range of simulation studies which contribute towards the development of the AVC and its effectiveness in the field can all be performed on the same platform. A new power electronics simulator called SABER has proven to be very effective for this study because of its model-independent structure and extensive library that covers various disciplines of engineering. The simulation studies are aimed at gaining a better understanding of the interaction between the AVC and the distribution system. They cover a range of phenomena such as switching transients due to mechanical capacitor bank closing, fast transients due to reverse recovery of the power diodes of the AVC, power system harmonics and voltage flicker problem. This paper also briefly describes the criteria for selection of the simulation tool and the models developed

Published in:

Power Delivery, IEEE Transactions on  (Volume:10 ,  Issue: 2 )