By Topic

CASM: a VLSI chip for approximate string matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. Sastry ; HAL Comput. Syst. Inc., Canpbell, CA, USA ; N. Ranganathan ; K. Remedios

The edit distance between two strings a1, ..., am and b 1, ..., bn is the minimum cost s of a sequence of editing operations (insertions, deletions and substitutions) that convert one string into the other. This paper describes the design and implementation of a linear systolic array chip for computing the edit distance between two strings over a given alphabet. An encoding scheme is proposed which reduces the number of bits required to represent a state in the computation. The architecture is a parallel realization of the standard dynamic programming algorithm proposed by Wagner and Fischer (1974), and can perform approximate string matching for variable edit costs. More importantly, the architecture does not place any constraint on the lengths of the strings that can be compared. It makes use of simple basic cells and requires regular nearest neighbor communication, which makes it suitable for VLSI implementation. A prototype of this array has been built at the University of South Florida

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:17 ,  Issue: 8 )