By Topic

On critical point detection of digital shapes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pengfei Zhu ; James River Corp., Easton, PA, USA ; P. M. Chirlian

In this paper, we present a nonlinear algorithm for critical point detection (CPD) of 2D digital shapes. The algorithm eliminates the problems arising from curvature approximation and Gaussian filtering in the existing algorithms. Based on the definition of “critical level,” we establish a set of criteria for the design of an effective CPD algorithm for the first time. By quantifying the critical level to the modified area confined by three consecutive “pseudocritical points,” a simple but very effective algorithm is developed. The comparison of our experimental results with those of many other CPD algorithms shows that the proposed algorithm is superior in that it provides a sequence of figures at every detail level, and each has a smaller integral error than the others with the same number of critical points. The experimental results on shapes with various complexities also show the algorithm is reliable and robust with regard to noise

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:17 ,  Issue: 8 )