By Topic

BiCMOS circuits for high speed current mode D/A converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. J. Romanczyk ; Celestia Inc., North York, Ont., Canada ; B. H. Leung

A new BiCMOS current cell and a BiCMOS current switch for high speed, self-calibrating, current-steering D/A converters are described. The BiCMOS current cell can be realized in a BiCMOS process or in a conventional CMOS process using a substrate PNP transistor, while the BiCMOS current switch is intended for implementation in a BiCMOS process. The performance of these circuits has been demonstrated in 0.8 μm BiCMOS and 1.2-μm CMOS technologies. A detailed noise analysis of the BiCMOS current cell indicates that noise during the calibration phase limits its relative accuracy to about 150 ppm. This is substantiated by measured results which show a relative matching of about 100-150 ppm, which is the equivalent of about 13 b performance. Measurement results also indicate that the absolute accuracy of the BiCMOS current cell is better than 0.5% over the designed current range, which is better than that of previously reported designs. Test results for the BiCMOS current switch indicate that a 10-90% switching time of 0.9 ns has been achieved. Furthermore, the switching time of the new BiCMOS switch is very insensitive to current level and input waveform compared to conventional CMOS switches. A 4-b D/A converter based on these components has been fabricated, and test results have demonstrated that it is functional. This DAC will be used as the internal DAC of a ΣΔ modulator for over-sampled video and digital radio applications

Published in:

IEEE Journal of Solid-State Circuits  (Volume:30 ,  Issue: 8 )