By Topic

Dynamic properties of partly gain-coupled 1.55-μm DFB lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
H. Lu ; Bell-Northern Res., Ottawa, Ont., Canada ; T. Makino ; G. P. Li

The lasing characteristics and dynamic properties of partly gain-coupled 1.55-μm DFB lasers with a gain corrugation in the strained-layer MQW active region are presented. Narrow spectral linewidth, which is associated with the low linewidth enhancement factor, was experimentally measured. By analyzing data from RIN measurements, the damping rate, the damping factor, the intrinsic bandwidth and the effective differential gain were obtained. From the small-signal frequency response, a measured 3 dB bandwidth of 22 GHz at 10 mW output power was achieved. The high bandwidth is believed to be related to the high differential gain, resulting from the combination of longitudinal gain and index-coupling mechanisms and the reduction of the carrier transport time, which is due to an efficient lateral carrier injection along the longitudinal interface. Experimental results show that under 10 Gbit/s pseudorandom NRZ modulation, the devices have small wavelength chirp and clear eye openings making them suitable for long haul and high bit-rate applications

Published in:

IEEE Journal of Quantum Electronics  (Volume:31 ,  Issue: 8 )