Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

On the complexity of hypothesis space and the sample complexity for machine learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nakazawa, M. ; Dept. of Ind. Eng. & Manage., Waseda Univ., Tokyo, Japan ; Kohnosu, T. ; Matsushima, T. ; Hirasawa, S.

The problem of learning a concept from examples in the model introduced by Valiant (1984) is discussed. According to the traditional ways of thinking, it is assumed that the learnability is independent of the occurrence probability of instance. By utilizing this probability, we propose the metric as a new measure to determine the complexity of hypothesis space. The metric measures the hardness of discrimination between hypotheses. Furthermore, we obtain the average metric dependent on prior information. This metric is the measure of complexity for hypothesis space in the average. Similarly in the worst case, we obtain the minimum metric. We make clear the relationship between these measures and the Vapnik-Chervonenkis (VC) dimension. Finally, we show the upper bound on sample complexity utilizing the metric. This results can be applied in the discussion on the learnability of the class with an infinite VC dimension

Published in:

Systems, Man, and Cybernetics, 1994. Humans, Information and Technology., 1994 IEEE International Conference on  (Volume:1 )

Date of Conference:

2-5 Oct 1994