Cart (Loading....) | Create Account
Close category search window
 

Energy band diagram of a Si metal-oxide-semiconductor field-effect transistor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ying Fu ; Dept. of Phys. & Meas. Technol., Linkoping Univ., Sweden ; Willander, M.

We have calculated the energy band diagram of a Si metal-oxide-semiconductor field-effect transistor (FET) with two-storied gates most recently experimentally investigated by Matsuoka et al. (see Appl. Phys. Lett., vol. 64, p. 586, 1994). From out numerical calculations of the three-dimensional Hartree-Fock equation, it is found that the increase of the upper gate negative bias does not transform the simple quantum wire (conducting channel created by the lower gate) into coupled quantum dots, it only makes the conducting channel narrower. Without the lower gate, the system can be well approximated by a two-dimensional Laplace equation. By the corresponding analytical solution it is shown that only in the spatial region very close to the upper gate where can we observe very weak quantum barriers induced by individual metal lines in the upper gate. For the FET structure of Matsuoka et al., coupled quantum dots and thus Coulomb blockade effect are not very likely. The experimental results of transconductance and conductance as functions of upper gate and lower gate can be well explained by the carrier transport through the part of the conducting channel compressed by the upper gate. Precaution should therefore be exercised when analysing experimental results concerning small-size and quantum structure systems,.

Published in:

Electron Devices, IEEE Transactions on  (Volume:42 ,  Issue: 8 )

Date of Publication:

Aug 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.