By Topic

WDM coherent optical star network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
B. S. Glance ; AT&T Bell Labs., Holmdel, NJ, USA ; K. Pollock ; C. A. Burrus ; B. L. Kasper
more authors

The results obtained with a fiber-optical star network using densely-spaced wavelength division multiplexing (WDM) and heterodyne detection techniques are reported. The system consists of three lasers transmitting at optical frequencies around 234000 GHz, spaced at a frequency interval of 300 MHz. The lasers are frequency-shift-key (FSK) modulated at 45 Mb/s. A 4×4 optical star coupler combines the three optical signals. The WDM signals received from one of the four outputs of the star coupler are demultiplexed by a heterodyne receiver. The minimum received optical power needed to obtain a bit-error rate of 10-9 is -61 dBm or 113 photon/bit, which is 4.5 dB from the shot noise limit. The degradation caused by co-channel interference was measured and found to be negligible when the channels, modulated at 45 Mb/s, are spaced by more than 130 MHz in the IF domain. These results indicate that a WDM coherent optical star network of this type has a potential throughput of 4500 Gb/s

Published in:

Journal of Lightwave Technology  (Volume:6 ,  Issue: 1 )