By Topic

Analysis of finite buffered multistage combining networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gyungho Lee ; Dept. of Electr. Eng., Minnesota Univ., Minneapolis, MN, USA ; Kang, B.-C. ; Kain, R.Y.

Analyzing the performance of finite buffered multistage networks has been considered a difficult task because of dynamic blocking effects due to finite sized buffers. With the multistage networks enhanced with combining capability, in which multiple requests directed to a shared location combine together to form a single request to be forwarded, the analysis becomes even more difficult due to the interactions between combining probability and queuing delay. Performance bounds for combining networks are known under two extreme assumptions: infinite combining queues and saturated finite combining queues. We analyze multistage combining networks with the consideration of blocking due to finite combining queues. Our analysis provides iterative solutions for combining probability, blocking probability, and queuing delay

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:6 ,  Issue: 7 )